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Polynomial-time guarantees without assuming log-concavity!
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ROU:Reverse OU-process. ALG:Algorithm
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Theorem (Kolmogorov’s extension theorem).
For all t1, · · · , tk ∈ T, k ∈ N let νt,··· ,tk be probability measures on Rnk s.t.

νtσ(1),··· ,tσ(k) (F1 × · · · × Fk) = νt1,··· ,tk

(
Fσ−1(1) × · · · × Fσ−1(k)

)
for all permutations σ on {1, 2, · · · , k} and

νt1,...,tk (F1 × · · · × Fk) = νt1,··· ,tk,tk+1,··· ,tk+m (F1 × · · · × Fk × Rn × · · · × Rn)

for all m ∈ N, where (of course) the set on the right hand side has a total of k + m
factors. Then there exists a probability space (Ω,F ,P) and a stochastic process {Xt} on
Ω,Xt : Ω → Rn, s.t.

νt1 , · · · , tk (F1 × · · · × Fk) = P [Xt1 ∈ F1, · · · ,Xtk ∈ Fk]

for all ti ∈ T, k ∈ N and all Borel sets Fi.
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Theorem(Kolmogorov’s extension theorem for markov process)
Let ν ∈ Prob(S,B) and let {Qs,t}s≤t be Markov trsansition operaters on (S,B)2.Then
there exist a unique probability measure

Pν ∈ Prob(ST,B⊗T)

s.t.Xt(ω) = ω(t) is a Markov process on(ST,B⊗T,Pν) with trsanition
operaters{Qs,t}s≤tand X0 ∼ ν.

Proof of consistency(informal). Assume B0,B2 ∈ S,then the marginal measure on t0
and t2 is

Pν
t0,t1,t2(B0 × S × B2)

=

∫
B0

ν(dx0)
∫

S
qt0,t1(x0,dx1)

∫
B2

qt1,t2(x1, dx2)
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=

∫
B0×B2

ν(dx0)
∫

S
qt0,t1(x0, dx1)qt1,t2(x0, dx2)(Tonelli’s theorem)

=

∫
B0×B2

ν(dx0)qt0,t2(x0, dx2)(Chapman–Kolmogorov equation)

= Pν
t0,t2(B0 × B2)

The Chanpman-kolmogorov equation imply the consistency. It is not the C-K equation
satisfies the Markov process, but the Markov process satisfies the C-K equation!1

In fact, the more general C-K equation describes exactly this consistency:

1for details: Introduction to Stochastic Integration,Hui-Hsiung Kuo,Section 10.5
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• From this theorem,we see that a Markov process is determined by its initial
distribution and transition probabilities satisfying the Chapman-Kolmogorov equation.

• Conversely,if ν is aprobability measure on R and {Ps,t(x, ·); s < t, x ∈ R} is a
collection of probability measures satisfying the Chapman-Kolmogorov equation,then
there exists a Markov process Xt with initical distribution ν .

Theorem(Solution of SDE is Markov process)
Let σ(t, x) and f(t, x) be measurable functions on [a, b]× R satisfying the Lipschitz and
linear growth conditions in x. Suppose ξ is an Fa-measurable random variable with
E
(
ξ2
)
< ∞. Then the unique continuous solution of the stochastic integral equation

Xt = ξ +

∫ t

a
σ (s,Xs) dB(s) +

∫ t

a
f (s,Xs) ds, a ≤ t ≤ b

is a Markov process.

BTW,if ξ is not a r.v.,but is a real number that ξ ∈ R,Then Xt is a stationary Markov
process.
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Ex. Transition probability of OU process
Examples
What is the transition probability (transition kernel) of the Langevin equation:

dXt = αdBt − βXtdt

First, we need the ito’s lemma23 to solve this SDE.
Theorem(Ito’s lemma).
Let Xt be an Ito process given by dXt = udt + vdBt. Let g(t, x) ∈ C2([0,∞)× R) (i.e. g
is twice continuously differentiable on [0,∞)× R). Then Yt = g (t,Xt) is again an Ito
process, and

dYt =
∂g
∂t (t,Xt) dt + ∂g

∂x (t,Xt) dXt +
1

2

∂2g
∂x2 (t,Xt) · (dXt)

2

2Strict proof: Introduction to Stochastic Integration,Hui-Hsiung Kuo,Section 7.1
3Normal proof:Stochastic Differential Equations,Bernt Oksendal,Section 4.1
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Solution.
d
(

eβtXt
)
= βeβtXtdt + eβtdX(t)

= βeβtXtdt + eβt (αdB(t)− βXtdt)
= αeβtdB(t)

Then convert this stochastic differential into a stochastic integral,

eβtXt = eβsXs +

∫ t

s
αeβudB(u), s ≤ t

Therefore, Xt is given by

Xt = e−β(t−s)Xs + α

∫ t

s
e−β(t−u)dB(u), s ≤ t
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In particular, when s = 0, we get the solution of the Langevin equation :

Xt = e−βtx0 + α

∫ t

0
e−β(t−u)dB(u)

Then,we can use the ito isometric:

Xt = e−βtx0 + N
(
0,

α2

2β

(
1− e−2β(t−0)

))
We’ve already figured out the transfer kernel:

P(Xt ∈ dxt | Xs = xs) = ps,t(xs, dxt)

=

∫
dxt

N
(

x; e−βt,
α2

2β

(
1− e−2β(t−s)

))
dx

Remark. Although the initial value of the OU process may not be constant, its transition
probability is only related to (t − s), so the OU process is a stationary Markov process.
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Definition (f-divergence)
Let f : R≥0 → R be a convex function such that:
(i) f(1) = 0 (ii) f is strictly convex around 1, i.e.,

f(αx + (1− α)y) < αf(x) + (1− α)f(y)

for all x, y ∈ R≥0 and α ∈ [0, 1] such that αx + (1− α)y = 1. Let P,Q ∈ P(X ) be two
probability measures on X , and let λ ∈ M+(X ) be a measure that dominates them both,
i.e., P,Q � λ. The f-divergence between Q and P is defined as

Df(P‖Q) := EQ

[
f
(

dP/dλ
dQ/dλ

)]
=

∫
X

f
(

dP/dλ
dQ/dλ

)
dQ(x)

where dP/dλ and dQ/dλ are the Radon-Nikodym derivatives of P and Q, respectively,
w.r.t λ.
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If P � Q, then Df(P‖Q) = EQ
[
f
(

dP
dQ

)]
, where dP

dQ is the Radon-Nikodym derivative of
P w.r.t. Q.
The Kullback-Leibler (KL) divergence (also sometimes referred to as relative entropy
or information divergence) is the f-divergence induced by f(x) = x log x. Namely, the KL
divergence of Q from P is

DKL(P‖Q) = Dx log x(P‖Q) = EQ

[
f
(

dP/dλ
dQ/dλ

)]
= EP

[
log
(

dP/dλ
dQ/dλ

)]
.

The Total Variation (TV) distance, is the f-divergence induced by f(x) = 1
2 |x − 1|.

Namely, the TV distance between Q and P is

δTV(P,Q) = D 1
2
|x−1|(P‖Q) =

1

2
EQ

[∣∣∣∣ dP/dλ
dQ/dλ

− 1

∣∣∣∣] = 1

2

∫
X

∣∣∣∣ dP
dλ

− dQ
dλ

∣∣∣∣ .
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Equivalent Definition (TV distance).
Consider a measurable space (Ω,F) and probability measures P and Q defined or (Ω,F).
The total variation distance between P and Q is defined as

TV(P,Q) = sup
A∈F

|P(A)− Q(A)|

This is the largest absolute difference between the probabilities that the two probability
distributions assign to the same event.

Theorem(Pinsker’s inequality).
If P and Q are two probability distributions on a measurable space (Ω,F), then

TV(P,Q) ≤
√

1

2
KL(P‖Q)

17 / 50



Data Processing Inequality

Theorem (Data Processing Inequality)
Let PX,QX ∈ P(X ) and PY|X be a transition kernel from (X ,F) to (Y,G). Let
PY,QY ∈ P(Y) be the transformation of PX and QX, respectively, when pushed through
PY|X, i.e., PX(B) =

∫
X PY|X(B | x)dPX(x). Then, for any f-divergence, we have that

Df (PX‖QX) ≥ Df (PY‖QY) .

This can be thought of as follows: pushing two observations X and Y through a channel
will only make it harder to distinguish between them.
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Definition(Diffusion process).
An Rn-valued Markov process Xt, a ≤ t ≤ b, is called a diffusion process if satisfy the
following three conditions for any t ∈ [a, b], x ∈ Rn, and c > 0 :
(1) limε→0

1
εP (|Xt+ε − x| > c | Xt = x) = 0.

(2) limε→0
1
εE [Xt+ε − x | Xt = x] = ρ(t, x) exists.

(3) limε→0
1
εE
[
(Xt+ε − x) (Xt+ε − x)T | Xt = x

]
= Q(t, x) exists.

Theorem (Solution of SDE is a diffusion process).
Let σ(t, x) and f(t, x) be functions satisfie Lipschitz’s conditions and linear growth
condition. Assume that σ(t, x) and f(t, x) are continuous on [a, b]× Rn. Then the
solution Xt of Xt = xa +

∫ t
a σ(s,Xs)dBs +

∫ t
a f(s,Xs)ds is a diffusion process with diffusion

coefficient Q(t, x) and drift ρ(t, x) given by

Q(t, x) = σ(t, x)σ(t, x)T, ρ(t, x) = f(t, x)
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Diffusion model

Forward process. In DDPM, we start with a SDE. For clarity, we consider the simplest
possible choice, which is the Ornstein-Uhlenbeck (OU) process

dX̄t = −X̄t dt +
√
2 dBt, X̄0 ∼ q,

where (Bt)t>0 is a standard Brownian motion in Rd.
Reverse process.If we reverse the forward process in time, then we obtain a process that
transforms noise into samples from q, which is the aim of generative modeling.

dX̄←t =
{

X̄←t + 2∇ ln qT−t
(
X̄←t
)}

dt +
√
2 dBt, X̄←0 ∼ qT

where now (Bt)t∈[0,T] is the reversed Brownian motion. Here, ∇ ln qt is called the score
function for qt.
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Score matching. In order to estimate the score function ∇ ln qt, consider minimizing the
L2 (qt) loss over a function class F ,

minimize
st∈F

Eqt

[
‖st −∇ ln qt‖2

]
,

where F could be, e.g., a class of neural networks.
Score-based Generative Model(SGM).In order to approximately implement the reverse
SDE , we first replace the score function ∇ ln qT−t with the estimate sT−t. Then, for
t ∈ [kh, (k + 1)h] we freeze the value of this coefficient in the SDE at time kh. It yields
the new SDE

dX←t = {X←t + 2sT−kh (X←kh)} dt +
√
2 dBt, t ∈ [kh, (k + 1)h]

In particular, conditionally on X←kh, the next iterate X←(k+1)h has an explicit Gaussian
distribution.
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Notation

Stochastic processes and their laws.
• The data distribution is q = q0.
• The forward process is denoted

(
X̄t
)

t∈[0,T]
, and X̄t ∼ qt.

• The reverse process is denoted
(
X̄←t
)

t∈[0,T]
, where X̄←t := X̄T−t ∼ qT−t.

• The SGM algorithm is denoted (X←t )t∈[0,T], and X←t ∼ pt. Recall that we initialize at
p0 = γd, the standard Gaussian measure.

• The process
(
X←,qT

t
)

t∈[0,T]
is the same as (X←t )t∈[0,T], except that we initialize this

process at qT rather than at γd. We write X←,qT
t ∼ pqT

t .
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Assumption

• Assumption 1 (Lipschitz score). For all t ≥ 0, the score ∇ ln qt is L-Lipschitz.
• Assumption 2 (second moment bound). We assume that m2

2 := Eq
[
‖ · ‖2

]
< ∞.

• Assumption 3 (score estimation error). For all k = 1, . . . ,N,

Eqkh

[
‖skh −∇ ln qkh‖2

]
≤ ε2score
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Sampling assurance for DDPM
Theorem 2 (DDPM).
Suppose that Assumptions 1, 2, and 3 hold. Let pT be the output of the DDPM
algorithm (Section 2.1) at time T, and suppose that the step size h := T/N satisfies
h ≲ 1/L, where L ≥ 1. Then, it holds that

TV (pT, q) ≲
√
KL (q‖γd) exp(−T)︸ ︷︷ ︸

convergence of forward process

+
(

L
√

dh + Lm2h
)√

T︸ ︷︷ ︸
discretization error

+ εscore
√

T︸ ︷︷ ︸
score estimation error

.

To interpret this result, suppose that KL
(
q‖γd) ≤ poly(d) and m2 ≤ d. Choosing

T � log
(
KL
(
q‖γd) /ε) and h � ε2

L2d , and hiding logarithmic factors,

TV (pT, q) ≤ Õ (ε+ εscore ) , for N = Θ̃

(
L2d
ε2

)
In particular, in order to have TV (pT, q) ≤ ε, it suffices to have score error εscore ≤ Õ(ε).
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Proof (informal). By data processing inequality

TV (pT, q) ≤ TV (PT,Q←T ) (1)

Here, the distributions pT, q can be viewed as marginal distributions of the distributions
PT,Q←T on the path space. Given the set A ⊆ Rd, there is

pt(A) = PT
({

ω ∈ C
(
[0,T],Rd

)
: Xt(ω) ∈ A

})
(2)

The state distribution can then be obtained from the path measure by an integral, i.e

pt(A) =
∫
{ω∈C([0,T],Rd):Xt(ω)∈A}

PT(dω) (3)
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Using triangle inequality and data processing inequality

TV (pT, q) ≤ TV (PT,Q←T )

≤ TV
(
PT,PqT

T
)
+ TV

(
PqT

T ,Q←T
)

≤ TV
(

qT, γ
d
)
+ TV

(
PqT

T ,Q←T
)

≤
√
KL (q‖γd) exp(−T) + TV

(
PqT

T ,Q←T
)

(4)

Where TV
(
PT,PqT

T
)
≤ TV

(
qT, γd)is because of the data processing inequality, The path

distribution PT,PqT
T is induced by the same stochastic process evolution(i.e. through

the same transfer kernel), and the path measure can be determined by Kolmogorov’s
expansion theorem.

Next,we use Girsanov’s theorem to bound TV
(
PqT

T ,Q←T
)
.
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Girsanov’s theorem
Theorem 8(Girsanov’s theorem).
For t ∈ [0,T], let Lt =

∫ t
0 bs dBs where Bt is a Q-Brownian motion. Assume

EQ
∫ T
0 ‖bs‖2 ds < ∞. Then, Lt is a Q-martingale in L2(Q). Moreover, if

EQE(L)T = 1, where E(L)t := exp
(∫ t

0
bs dBs −

1

2

∫ t

0
‖bs‖2 ds

)
then E(L) is also a Q-martingale and the process

t 7→ Bt −
∫ t

0
bs ds

is a Brownian motion under P := E(L)TQ, the probability distribution with density E(L)T
w.r.t. Q.
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Conventions for Girsanov’s theorem. When we apply Girsanov’s theorem, it is convenient
to instead think about a single stochastic process, which for ease of notation we denote
simply via (Xt)t∈[0,T], and we consider different measures over the path space
C
(
[0,T];Rd).

The three measures we consider over path space are:
• Q←T , under which (Xt)t∈[0,T] has the law of the reverse process

dXt = {Xt + 2∇ ln qT−t (Xt)} dt +
√
2 dBt, X0 ∼ qT

• PqT
T , under which (Xt)t∈[0,T] has the law of the SGM algorithm initialized at qT

(corresponding to the process
(
X←,qT

t
)

t∈[0,T]
defined above).

dXt = {Xt + 2sT−kh (Xkh)} dt +
√
2 dBt, t ∈ [kh, (k + 1)h]
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The SDE described by ROU and ALG is valid under different path measures, but the path
evolution of Brownian motion is not consistent, now we consider the measure
transformation from Q←T to PT.
Consider the SDE described by ALG:

dXt = {Xt + 2sT−kh (Xkh)} dt +
√
2dβt

= {Xt + 2∇ ln qT−t(Xt)} dt + {2sT−kh (Xkh)− 2∇ ln qT−t + (Xt)} dt +
√
2dβt

(5)

The SDE described by ROU:

dXt = {Xt + 2∇ ln qT−t (Xt)} dt +
√
2 dBt, X0 ∼ qT (6)

Where dβtis the differential of the standard Brownian motion on the measure P. If we
can make the blue parts equal. Then it is possible to find an adaptive process connecting
two Brownian motions according to Girsanov’s theorem.
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Let
{2sT−kh (Xkh)− 2∇ ln qT−t + (Xt)} dt +

√
2dβt =

√
2dBt (7)

By Girsanov’s theorem, it can be obtained

bt =
√
2 (sT−kh (Xkh)−∇ ln qT−t (Xt)) (8)

We can then calculate the KL divergence between path measures.

KL
(
Q←T ‖PqT

T
)
= EQ←T ln

dQ←T
dPqT

T
= EQ←T ln E(L)−1T

=

N−1∑
k=0

EQ←T

∫ (k+1)h

kh
‖sT−kh (Xkh)−∇ ln qT−t (xt)‖2 dt.

(9)
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For t ∈ [kh, (k + 1)h], decompose this formula

EQ←T

[
‖sT−kh (Xkh)−∇ ln qT−t (Xt)‖2

]
≲ EQ←T

[
‖sT−kh (Xkh)−∇ ln qT−kh (Xkh)‖2

]
+ EQ←T

[
‖∇ ln qT−kh (Xkh)−∇ ln qT−t (Xkh)‖2

]
+ EQ←T

[
‖∇ ln qT−t (Xkh)−∇ ln qT−t (Xt)‖2

]
≲ ε2score + EQ←T

[∥∥∥∥∇ ln
qT−kh
qT−t

(Xkh)

∥∥∥∥2
]
+ L2EQ←T

[
‖Xkh − Xt‖2

]
(10)

The third term can be easily bound, and then we deal with the blue formula, which we
call the perturbation error.
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The OU process:
dX̄t = −X̄t dt +

√
2 dBt

can be solved to obtain
d(etXt) =

√
2etdBt (11)

Integrate it from s to t
Xt = es−tXs +

∫ t

s

√
2etdBt (12)

The ito integral of the second term is the integral of a deterministic function, which
follows the Gaussian distribution, and the variance can be obtained using ito isometric,
and Xt can be rewritten as

Xt = es−tXs +
√

1− e2(s−t)ξ, ξ ∼ N(0, 1) (13)
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If we integrate the formula (11) from (T − t) to (T − kh), we can relate the numerator
and denominator in the perturbation error, i.e

XT−kh = eT−t−(T−kh)XT−t +
√

1− e2(T−t−(T−kh))ξ

= ekh−tXT−t +
√

1− e2(kh−t)ξ

= S#qT−t ∗ N(0, 1− e2(kh−t))

(14)

Where S : Rd→Rd is the mapping,S(x) := exp(−(t−kh))x
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Decompose the perturbation error, term∥∥∥∥∇ ln
qT−kh
qT−t

(xkh)

∥∥∥∥
=

∥∥∥∥∇ ln
S#qT−t ∗ N

qT−t
(xkh)

∥∥∥∥
=

∥∥∥∥∇ ln
S#qT−t ∗ N · S#qT−t

qT−t · S#qT−t
(xkh)

∥∥∥∥
≤
∥∥∥∥∇ ln

S#qT−t ∗ N
S#qT−t

(xkh)

∥∥∥∥+ ∥∥∥∥∇ ln
S#qT−t
qT−t

(xkh)

∥∥∥∥
(15)

The second term can be solved directly, and now let’s analyze the first term.
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∇ lnS#qT−t ∗ Nσ2(x) =
∫
Rd −∇V(y)e−V(y)e−

∥x−y∥2
2σ2 dy∫

Rd e−V(y)e−
∥x−y∥2
2σ2 dy

= −Epx,σ2∇V(y),

Which takes advantage of the S#qT−T ∝ e−V(x)and convolution formula, px,σ2 is
probability density:

px,σ2(y) ∝ p(y)e−
∥y−x∥2
2σ2

According to the hypothesis, the gradient of the potential function ∇V(x) is L-Lipschitz
(i.e. ∇ ln qtL-Lipschitz),

‖∇ lnS#qT−t ∗ Nσ2(x)−∇ lnS#qT−t‖ =
∥∥∥Epx,σ2 [∇V(y)−∇V(x)]

∥∥∥
≤ Epx,σ2 [L‖y − x‖]

Next, by the lemma12 in Convergence for score-based generative modeling with
polynomial complexity4 ,We can finally bound it.

4https://arxiv.org/abs/2206.06227
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Advantages of using Girsanov’s theorem
• Handle score errors under real distribution.
• The proof requires the weakest hypothesis.

Disadvantages of using Girsanov’s theorem
• the final result is unsatisfying because we have moved to a weaker metric (TV

rather than KL) for a seemingly silly reason (the failure of the triangle inequality for
the KL divergence).

• we only able to establish a bound on KL which grows with the iteration number
N,this is unsatisfying because “running the Markov chain too long”should not be a
problem.5

5Log-Concave Sampling, https://chewisinho.github.io/main.pdf
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Manifold hypothesis

The manifold hypothesis6 posits that many high-dimensional data sets that occur in the
real world actually lie along low-dimensional latent manifolds inside that
high-dimensional space.

6Foundations of Machine Learning,Mehryar Mohri,Chapter 15
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Consequences for arbitrary data distributions with
bounded support
In general we cannot obtain non-trivial guarantees7 for TV(pT, q), because pT has full
support and therefore TV(pT, q) = 1 under the manifold hypothesis.

Corollary 3 (compactly supported data)
Suppose that q is supported on the ball of radius R ≥ 1. Let t � ε2W2

/(
√

d(R ∨
√

d)).
Then, the output pT−t of DDPM is εTV-close in TV to the distribution q̄t, which is
εW2-close in W2 to q, provided that the step size h is chosen appropriately according to
Theorem 2 and

N = Θ̃

(
d3R4(R ∨

√
d)4

ε2TVε
8
W2

)
and εscore ≤ Õ (εTV)

7Convergence of denoising diffusion models under the manifold hypothesis,
https://arxiv.org/abs/2208.05314
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If the output pT−t of DDPM at time T − t is projected onto B (0,R0) for an appropriate
choice of R0, then we can also translate our guarantees to the standard W2 metric, which
we state as the following corollary.

Corollary 5 (compactly supported data, W2 metric)
Suppose that q is supported on the ball of radius R ≥ 1. Let t � ε2/(

√
d(R ∨

√
d)), and

let pT−t,R0 denote the output of DDPM at time T − t projected onto B (0,R0) for
R0 = Θ̃(R). Then, it holds that

W2 (pT−t,R0 , q) ≤ ε

, provided that the step size h is chosen appropriately according to Theorem 2,
N = Θ̃

(
d3R8(R ∨

√
d)4/ε12

)
, and εscore ≤ Õ(ε).
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Critically damped Langevin diffusion (CLD)

The critically damped Langevin diffusion (CLD) is based on the forward process

dX̄t = −V̄t dt
dV̄t = −

(
X̄t + 2V̄t

)
dt + 2 dBt

The corresponding reverse process is

dX̄←t = −V̄←t dt
dV̄←t =

(
X̄←t + 2V̄←t + 4∇v lnqT−t

(
X̄←t , V̄←t

))
dt + 2 dBt

where qt := law
(
X̄t, V̄t

)
is the law of the forward process at time t. Note that the

gradient in the score function is only taken w.r.t. the velocity coordinate.
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Assumption 4. For all t ≥ 0, the score ∇v lnqt is L-Lipschitz.
Assumption 5. For all k = 1, . . . ,N,

Eqkh

[
‖skh −∇v lnqkh‖

2
]
≤ ε2score .

Theorem 6 (CLD).
Suppose that Assumptions 2, 4, and 5 hold. Let pT be the output of the SGM algorithm
based on the CLD (Section 2.2) at time T, and suppose that the step size h := T/N
satisfies h ≲ 1/L, where L ≥ 1. Then, there is a universal constant c > 0 such that

TV
(

pT, q ⊗ γd
)
≲
√
KL (q‖γd) + FI (q‖γd) exp(−cT)︸ ︷︷ ︸

convergence of forward process

+
(

L
√

dh + Lm2h
)√

T︸ ︷︷ ︸
discretization error

+ εscore
√

T︸ ︷︷ ︸
score estimation error

where FI
(
q‖γd) is the relative Fisher information FI

(
q‖γd) := Eq

[∥∥∇ ln
(
q/γd)∥∥2].
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Remark.
• Under our assumptions, the CLD does not improve the complexity of SGMs over

DDPM.
• ”When comparing models with similar network capacity and under NFE(number of

function—neural network—evaluations) budgets < 500,our CLD-SGM outperforms
all published results in terms of FID.We attribute these positive results to our
easier score matching task.”8

• In fact,if the distribution is assumed to satisfy the log-concave condition, it can be
shown that CLD can effectively reduce the computational complexity and thus obtain
better bound.

8https://arxiv.org/pdf/2112.07068
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The End
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