
A non-uniform node finite difference algorithm

Abstract—This thesis primarily investigates the ap-
plication of the Finite Difference Method (FDM) in
solving Ordinary Differential Equations (ODEs). Ini-
tially, the paper meticulously derives the FDM algo-
rithm for uniform nodes, utilizing the perspective of
Taylor expansion. Following this, the paper elucidates
how the uniform node FDM algorithm can be employed
to transform the problem of marginally-valued ordinary
differential equations into a system of linear equa-
tions. Subsequently, the paper introduces non-uniform
nodes into the FDM algorithm, reconstructs the finite
difference, and proposes an FDM algorithm for non-
uniform nodes. Finally, the paper employs MATLAB
to simulate both the uniform node FDM algorithm and
the non-uniform node FDM algorithm. The simulation
results demonstrate that the accuracy of the non-
uniform node FDM algorithm is ten times greater than
that of the uniform node FDM algorithm, and it can
fit the actual ODE results well.

Index Terms—FDM, Boundary-valued ODE, Legen-
dre polynomial, Numerical simulation,Numerical Anal-
ysis.

I. Introduction
Numerical analysis is the science of algorithms for the

study of continuous problems, mainly consisting of numer-
ical methods for solving differential-integral and partial
differential equations. The goal of numerical analysis is to
design and analyse mathematical algorithms that in order
to solve practical mathematical problems with limited
accuracy and computational time [1].

The numerical solution of Ordinary Differential Equa-
tions (ODEs) is an important piece of numerical analysis,
which mainly includes Euler’s method, Improved Euler’s
method, and Lunger-Kutta’s method.The core idea of
these methods is to discretise the differential equations
to create difference equations that give an approximation
of the solution at some discrete points [2].

The solution of numerical ordinary differential equations
is the basis of machine learning, and the effectiveness
of machine learning is inseparable from the accuracy of
numerical simulation, for example, the training process
of neural networks can be regarded as an optimisation
problem and the optimisation problem can be achieved
by solving a set of numerical differential equations.

In practical engineering problems, solving ordinary dif-
ferential equations with margin conditions is a common
occurrence. However, ordinary differential equations often
do not have stable analytical solutions, so we have to settle
for the second best solution. The analytical solutions are
obtained by numerical methods and applied. This thesis
focuses on the FDM solution algorithm and proposes a
non-uniform node FDM algorithm, which is verified by
simulation to obtain higher numerical accuracy than the
uniform node FDM algorithm.

II. Principles of FDM Algorithms

To make our discussion more concrete, we introduce
the numerical integration problem that the thesis mainly
addresses, Solving such differential equations:

u′′(x)− b(n)u′(x)− c(n)u(x) = x2 (1)

and satisfies the conditions u(−1) = −1, u(1) + u′(1) = 1.
where x ∈ [−1, 1] and b(n) = n2, c(n) = n, n denotes the
number of lattices in [−1, 1], i.e. the lattice size is h = 2

n .
But it needs to satisfy n ⩾ 32.

This type of ordinary differential equations has the third
type of edge-value condition [3], which is generalisable,
and by studying its numerical solution, we can easily
extend the numerical simulation method to the solution of
other equations. According to the type division of ordinary
differential equations, we can analyse this problem by
looking at it as an initial value problem and a margin
problem, and this paper focuses on the in-depth derivation
and simulation of the solution of the margin problem.

The methods for solving the margin problem of ordinary
differential equations mainly include the equivalent initial
value problem solution method of the margin problem, the
self-consistent solution method of the margin problem and
the matrix form of the marginal value problem solution
method [4], here mainly analyse the matrix form of the
marginal value problem solution method.

Finite-difference methods (finite-difference methods, or
FDM) [5], is a numerical method for differential equations
that approximates derivatives by finite differences, the
thereby seeking an approximate solution to the differential
equation. The main idea is to approximate the derivative
function by a linear combination of other conditions,
and for simplicity and consistency of derivation. We use
Taylor’s formula for derivation. Two examples are given for
the first-order difference, second-order difference, and the
finite difference formula is derived by Taylor’s expansion,
and finally the first-order and second-order finite difference
formula is given. Finally, we give common formulas for
first-order and second-order finite differences and intro-
duce finite difference matrices.

1) First order finite difference
The main focus here is to derive the finite difference
at the edges, and the derivation of the finite differ-
ence formula at the median is done in much the same
way as the derivation of the finite difference at the
edges [6].
Suppose there is a set of functions u(x) equidistant
nodes u1, u2, · · · , un, with the aim of finding the
value of the derivative function at the point u1 by
finite difference, where the nodes are spaced ∆x.
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A Taylor expansion of the function u(x2) at the point
u1 is obtained:

u(x2) = u (x1)+∆xu′ (x1)+
(∆x)2

2!
u′′ (x1)+O((∆x)3)

(2)
Take the first two terms of Taylor’s formula and
ignore all the subsequent terms, we could get a
first-order finite difference formula with first-order
accuracy:

u′ (x1) =
u (x2)− u (x1)

∆x
(3)

To improve the finite difference accuracy, we can
write the Taylor expansion of u(x3) at x1 using
values from more nodes:

u(x3) = u (x1)+2∆xu′ (x1)+
(2∆x)2

2!
u′′ (x1)+O((2∆x)3)

(4)
A linear combination Au(x2)+Bu(x3) of Eq.(2) and
Eq.(4) such that ∆xu′(x1) has a coefficient of 1 (any
one of these non-zero constants will do), and the
coefficient of (∆x)2u′′(x1) is 0, i.e.{

A+ 2B = 1

A 1
2! +B 22

2! = 0
(5)

Finding A = 2, B = − 1
2 , then combining the two

linearly according to their coefficients, and collapsing
them, one gets

u′ (x1) ≈
−3u (x1) + 4u (x2)− u (x3)

2∆x
(6)

This is the first order finite difference formula with
second order accuracy.

2) Second-order finite difference Here we derive
the second-order difference at the median point
u(xi), and similar to the procedure for the first-
order difference, we respectively u(xi+1) and u(xi−1)
perform a Taylor expansion at the point xi:

u (xi+1) = u (xi) + ∆x′ (xi) +
∆x2

2
u′ (xi)

+
∆x3

3!
u′′ (xi) +O

(
∆x3

)
u (xi−1) = u (xi)−∆x′ (xi) +

∆x2

2
u′ (xi)

− ∆x3

3!
u′′ (xi) +O

(
∆x3

)
(7)

Similarly, a linear combination of them such that
the coefficients in front of the second-order derivative
be 1 and the coefficients in front of the third-order
derivative be 0 gives the median form of the second-
order finite difference:

u′′ (xi) ≈
u (xi+1)− 2u (xi) + u (xi−1)

∆x2
(8)

Taking the above second-order median finite differ-
ence as an example, when dealing with the differ-
ential equation problem of discrete points by finite
difference, the form of its components has an obvious

regularity, and its second to (n − 1)th rows are all
only three values (their regularity is not covered by
the fact that the first and last row elements of the
differential matrix [7],which need to be determined
by the edge-value condition) And the regularity is
sorted in the order 1

∆x2 ,
−2
∆x2 ,

1
∆x2 as shown in the

matrix below:

1

∆x2
  


   · · ·   · · · · · ·
  1 −2 1

   . . . . . . . . .
   1 −2 1

   · · ·   · · · · · ·   

 (9)

Finally, the common formulas for first-order and second-
order finite differences [8] are given as follows:

First-order derivative finite difference formulas with
first-order accuracy:{

u′ (x0) ≈ u(x1)−u(x0)
h

u′ (x1) ≈ u(x1)−u(x0)
h

(10)

Finite difference formulas for first-order derivatives with
second-order accuracy:

u′ (x0) ≈ 1
2h [−3u (x0) + 4u (x1)− u (x2)]

u′ (x1) ≈ u(x2)−u(x0)
2h

u′ (x2) ≈ 1
2h [u (x0)− 4u (x1) + 3u (x2)]

(11)

Finite difference formulas for the center value of second-
order derivatives with second-order accuracy:

u′′ (x1) ≈
u (x0)− 2u (x1) + u (x2)

h2
(12)

The finite difference is thus briefly derived and exem-
plified, and the concepts of finite difference equations are
introduced, which are next utilized to view the topic as a
marginal value problem to be solved.

III. FDM matrix
Using finite difference matrices, Eq. (1) can be trans-

formed into

D2u⃗− n2D1u⃗− nIu⃗ =
−→
x2 (13)

i.e. (D2 − n2D1 − nI)u⃗ =
−→
x2 (14)

where Di denotes the finite difference matrix of order
i, the linear combination of finite difference matrices is
not directly equivalent to the original expression, due to
the need to satisfy the margin conditions. Therefore, the
differential matrix must be modified to satisfy the edge
conditions before it can be used.

The edge conditions can be categorized into three types,
but whichever edge condition is satisfied affects only the
first and last rows of the finite difference matrix such
that the linear equations satisfy the edge conditions of the
ODE. Let A = D2 − n2D1 − nI . Because it is necessary
to consider the first and last row elements of the linear
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combination of the differential matrix to satisfy the edge-
value condition, the derivation ignores for the time being
the first row elements and the last row elements to the
process and place them all in ∞ as follows:

Second-order finite difference matrix

  D2 =    1

h2
  


  ∞   · · · ∞
  1 −2 1

   . . . . . . . . .
   1 −2 1

  ∞   · · · ∞  

 (15)

First-order finite difference matrix

  D1 =    1

2h
  


  ∞   · · · ∞

   − 1 0 1

   . . . . . . . . .
   −1 0 1

  ∞   · · · ∞  

 (16)

Define the right end vector

b⃗ = x⃗2 =


∞
x2
2
...

x2
n−1

∞

 (17)

Next, the matrix is linearly combined so that the so-
lution of the problem of ordinary differential equations is
transformed into a system of linear equations, in order
to make the solution process more explicit, the two ends
of Eq.(14) are simultaneously Multiply by h2,and we can
obtain that:

Coefficient matrix h2A
∞ · · · ∞

1 + 0.5nh2 −2− nh2 1− 0.5n2h
. . . . . . . . .

1 + 0.5nh2 −2− nh2 1− 0.5n2h
∞ · · · ∞


(18)

The right end vector

h2⃗b =


∞

h2x2
2

...
h2x2

n−1

∞

 (19)

Next the edge-value condition is judged such that the
edge-value conditions u(−1) = −1, u(1) + u′(1) = 1 both
hold.

The edge-value condition u(−1) = −1 is the Dirichlet
edge-value condition, from which the row vector of the
first row of h2A can be determined as

[
1 0 · · · 0

]
,the first element of the corresponding right end vector is
−1.

The edge condition u(1) + u′(1) = 1 is the Robin
boundary condition [9], and a forward finite difference on
u′(1) has

un − un−1

h
+ un = 1

⇒− un−1 + (1 + h)un = h
(20)

The last row row vector of the coefficient matrix is thus
determined as

[0, · · · · · · , 0,−1, h+ 1].

The last element of the corresponding right end vector is
h.

After judging the margin conditions, we arrive at the
coefficient matrix and the right end vector,see Eq. (21),
and Eq. (22).

The right vector

h2⃗b =


−1
h2x2

2
...

h2x2
n−1

h

 (22)

Returning to the problem Ax = (D2−n2D1−nI)u⃗ =
−→
x2,

which we dealt with at the beginning. This equation is
transformed into h2Au = h2b, so that the ordinary differ-
ential equation for the marginals problem is transformed
into a problem of solving a system of linear equations [10],
and now we need only to complete the solution of this
system of linear equations to obtain the numerical solution
of the original differential equation at the equidistant
node.

A. Optimizing the accuracy of uniform node FDM
In the above derivation process, two-point forward dif-

ferencing is taken for the judgment of the edge-value con-
dition u(1)+u′(1) = 1, which is of first-order precision, and
we use second-order precision differencing in the second-
order differential matrix and the second-order precision
difference used in the first-order differential matrix does
not match, which may lead to a final result of reduced
precision [11], in order to optimize the problem, when
dealing with the margin derivatives, we use a three-point
forward differencing, i.e.

du

dx

∣∣∣∣
x=xn

≈ 3u (xn)− 4u (xn−1) + u (xn−2)

2h
(23)

The processing yields the row vector of the last row of the
optimized coefficient matrix h2A as

[0, · · · · · · , 0, 1,−4, 2h+ 3] (24)

The last element of the corresponding right end vector
is 2h.

In this way the optimized coefficient matrix and the
right end vector are obtained, as Eq. (25) and Eq. (26)
shown.
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Coefficient matrix h2A =


1 0 · · · 0

1 + 0.5nh2 −2− nh2 1− 0.5n2h
. . . . . . . . .

1 + 0.5nh2 −2− nh2 1− 0.5n2h
0 · · · 0 −1 h+ 1

 (21)

Optimization coefficient matrix h2A =


1 0 · · · 0

1 + 0.5nh2 −2− nh2 1− 0.5n2h
. . . . . . . . .

1 + 0.5nh2 −2− nh2 1− 0.5n2h
0 · · · 1 −4 2h+ 3

 (25)

The right vector

h2⃗b =


−1
h2x2

2
...

h2x2
n−1

2h

 (26)

Using the optimized coefficient matrix and the right end
vector, the value of the equidistant node with second order
accuracy can be found.

IV. Non-uniform node FDM algorithm

Fig. 1. One-dimensional grid

All of the above problems are differentiated for uniform
grids, which may result in the Longueuil phenomenon [12],
leading to a decrease in accuracy or even large fluctuations.
Using non-uniform nodes for processing can effectively
avoid the generation of the Longueuil phenomenon [13]and
improve the accuracy of the ODE solution. Thus, non-
uniform nodes can be sampled using non-uniform mesh
and solved using non-uniform mesh finite difference.Fig.(1)
shows a one-dimensional uniform network and a non-
uniform grid, i.e., a numerical axis with equally spaced
and unequally spaced points.

In this section, we still take the uniform way to prove
finite difference, i.e., Taylor expansion, but the simplicity
of the finite difference form for nonuniform nodes is far less
than that for uniform nodes.In the following, the formula
derivation of finite difference for non-uniform nodes is
carried out and the focus is on constructing the first-
order finite difference matrix and the second-order finite
difference matrix for non-uniform nodes.

1) Non-uniform node first-order finite difference: The
biggest difference between a non-uniform mesh and a
uniform mesh is that the distance between each node may
be different, so we cannot continue to use a uniform step
size, but rather a specific problem for a specific analysis.
Since the margin problem requires the construction of the
first and last row vectors of the coefficient matrix, we only
need to derive the finite difference at the intermediate
node xi. In the following, xi−1,xi+1 are Taylor-expanded
at the node xi, and the distance between xi−1 and xi is
h1, and the distance between xi+1 and xi is h2.

u (xi−1) = u (xi)− h1u
′ (xi) +

h2
1

2!
u′′ (xi) + o

(
h3
1

)
u (xi+1) = u (xi) + h2u

′ (xi) +
h2
2

2!
u′′ (xi) + o

(
h3
2

) (27)

Do a linear combination of Au(xi−1) + Bu(xi+1) for
both, so that the coefficients in front of the first-order
derivatives are not zero, and the coefficients in front
of the second-order derivatives are zero, to obtain the
non-uniform node first-order finite difference formula, the
solution can get the corresponding A and B, but here
directly apply the original uniform node of the second-
order accuracy of the first-order finite difference formula to
get the non-uniform node of the first-order finite difference
formula with second-order accuracy:

u′ (xi) =
u (xi+1)− u (xi−1)

h1 + h2
(28)

The finite difference matrix can be obtained by con-
structing the finite difference formulas one by one by
finding the distance between one node according to this
formula. The subsequent non-uniform node solution is
carried out in this way to construct the first-order finite
difference matrix of non-uniform nodes.

We also need to derive the first-order finite difference
for the right boundary condition due to the need of the
edge value condition.

Assume that the boundary points of the rightmost
segment are xn,xn−1 and xn−2, xn, where the distance
between xn−1 is hn, and then the distance between xn−1,
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xn−2 is hn−1, and the distance between xn−2 is hn−2. Tay-
lor expansion at xn for u(xn−1) and u(xn−2), respectively.

u (xn−1) =u (xn)− hnu
′ (xn) +

h2
n

2!
u2 (xn) + o

(
h2
n

)
u (xn−2) =u (xn)− (hn + hn−1)u

′ (xn)

+
(hn + hn−1)

2

2!
u2 (xn) + o

(
(hn + hn−1)

2
)

(29)
Make a linear combination of C1u(xn−1) + C2u(xn−2)

for both such that the coefficients in front of the first-
order derivatives are 1 and the coefficients in front of the
second-order derivatives are 0,obtain:{

C1 = −hn−1+hn

hnhn−1
= − 1

hn
− 1

hn−1

C2 = hn

hn−1(hn−1+hn)

(30)

A first-order finite difference formula with second-order
accuracy is thus obtained for the boundary points:

u′ (xn) = C1u (xn−1) + C2u (xn−2)− (C1 + C2)u (xn)
(31)

The last row of the row vector of the coefficient matrix
and the value of the last element of the right-hand side
vector can be constructed for the edge-value condition by
using Eq. (31), in exactly the same way as for the uniform
node. The method is exactly the same as the construction
of uniform nodes.

2) Non-uniform node second-order finite difference:
Let the linear combination of Au(xi−1) + Bu(xi+1) for
equation (27) be rearranged so that the coefficients of
the first-order derivatives are 0 and the coefficients of
the second-order derivatives are 1, yielding the linear
combination coefficients:{

A = 2
h1(h1+h2)

B = 2
h2(h1+h2)

(32)

Then, we could obtain that

u′′ (xi) = An (xi−1) +Bn (x1 + 1)− (A+B)u (xi) . (33)

This finite difference formula has first-order accuracy,
and the second-order finite difference matrix of non-
uniform nodes can be obtained by using this finite dif-
ference formula to perform the construction one by one.

V. Numerical simulation
Two parallel routes are taken here, i.e., uniform node

and non-uniform node finite difference to construct the
numerical simulation for analysis.

A. Uniform node finite difference solution
In order to evaluate the accuracy of the solution ob-

tained by the finite difference approach, we need to obtain
a sufficiently accurate solution to the differential equa-
tion.The way to obtain an accurate numerical solution is
to call the built-in function bvp4c in matlab for solving
ordinary differential equations for margin problems.

The result of the program is shown in Fig. (2), and in
order to visualize the difference between the exact solution

Fig. 2. Uniform Node FDM

and the numerical solution, we connect the exact solution
with a smooth curve.

The variation curves of absolute and relative errors for
uniform node finite difference are shown in Fig. (3), which
shows that the numerical solution oscillates above and
below the exact solution, the Moreover, the oscillation be-
comes gradually larger from the left endpoint to the right
endpoint, and the exact solution can be approximated
within the error range of 10%.

Fig. 3. Uniform Node FDM Error

B. Non-uniform node finite difference solution
Here, the nonuniform nodes use the 32 zeros of the 31-

order Legendre polynomials, and in order to construct the
edge-value condition, the first node is forced to be −1 and
the last node is forced to be 1 to satisfy the mesh edge-
value requirement.

The reason for choosing the zeros of Legendre polynomi-
als as non-uniform nodes is because Legendre polynomials
are orthogonal polynomials, which can effectively avoid
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the Lunge phenomenon and improve the accuracy and
stability of numerical computation.

The result of the solution is shown in Fig.(4).

Fig. 4. Non-uniform Node FDM

The non-uniform node solution error is shown in Fig.(5).

Fig. 5. Non-uniform Node FDM Error

According to the error image, it can be clearly seen that
its relative error is at most no more than 1%, which is
about ten times more accurate than the uniform node for
solving this ordinary differential equation, and can fit the
exact solution almost perfectly. After observing that the
error also increases gradually from the left endpoint to the
right breakpoint, which is consistent with the change of the
uniform node, the reason is because of the instability of the
boundary conditions at the right endpoint. This problem
is not discussed in this article, so it will not be explained
too much.

Comparing the finite difference accuracies of uniform
and non-uniform nodes, it is easy to find that the accuracy
of finite difference using orthogonal polynomial zeros as

the non-uniform nodes is much greater than the accuracy
of the difference of uniform nodes, which is verified in
many algorithms of numerical analysis, the orthogonal
bases play an important role in the representation of linear
spaces and the improvement of numerical accuracy.

VI. conclusion
Through our derivation and numerical simulation, using

the zeros of Legendre polynomials as the nodes of the
Non-uniform node FDM improves the accuracy of uniform
node FDM by 10 times than uniform node FDM, and
the relative error is in the range of around 1%, which
can perfectly approximate the exact numerical solution of
complex edge-value problems and is sufficient to meet the
daily life’s numerical accuracy demand, but because its
computational complexity is higher than that of uniform
nodes, the demand for computing power needs to be
increased in practical applications, so that the computer
can quickly process in real time.This enables the computer
to quickly process the node numerical data in real time and
complete the FDM operation of non-uniform nodes.
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