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1 SMLD

SMLD(Score Matching with Langevin dynamics),see Fig(ﬂ).

Generative Modeling by Estimating Gradients of the
Data Distribution

Yang Song Stefano Ermon
Stanford University Stanford University
yangsong@cs.stanford.edu ermon@cs.stanford.edu

Figure 1: paper of SMLD

1.1 Genrative Model

What is generative Alsee Fig(ﬁ).
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Figure 2: Generative Al schematic

Consider building deep neural networks that use Gaussian distributions to fit complex
true distributions,see Flg(
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Figure 3: Models of Probability distribution
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We often write the resulting distribution as

e—fo(x)
Zg

(1)

po(x) =

Proposition 1.1. Generative model = Models of Probability + Sampling.

1.2 Score Matching
Distributions can be expressed equivalent to Stein’s score:
SG(X) = vx 10gp0(x> = _vxfe(x) - Vx 10g ZG = _vxfe(x)' (2>
=0

If we can find the Score of a variable, it is equivalent to finding its distribution, and

score-matching is a way to estimate the Score,see Fig(E).
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{Xh Xo, " 1X;\'} ~ pdata(x) 89(}() R vx 10?; Pdata (X)
Figure 4: Estimate the score from the sample

The Objective function of Score-Matching is

1
5B [50(%) = Vilogpaca (x)3] 3)

However, pgqi,(x)is unknown and cannot be computed, eq. (E)Can be equivalent written

By o) |1 (Vi) + 5 505 (@

where Visg(x) denotes the Jacobian of sg(x).
Here are a few ways to Score-Matching:Eplicit score-matching,Denoising score-matching

and Sliced score-matching.

o Eplicit score-matching. The kernel density estimation method is used to es-

timate the distribution directly, and then the loss function is constructed for
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approximation.

a9 = o > b (X% Q

0.06

Figure 5: Illustration of kernel density estimation

Jusn(0) & By [se(x) — Vi log g(x)||

/||se — Vilogg(x lM Z% <X >1 dx (©)
= Li/llSa(X) — V. logg(x)|’ %K <X —hxm> dx.

e Sliced score-matching. The high-dimensional score is projected into the low-

dimensional space for contrast training, thus avoiding the Jacobian matrix calcu-
lation in eq.(H).

Ep By [T aso(x)Y + 3 5005 )

e Denoising score-matching. Denoising score-matching bypassing Jancobian’s
calculations, DSM’s loss function is

1 - -
S o 0 [[50(5) — Vi loga, (% | )] ®)

Where, x is the random variable before adding noise, and Xxis the random variable
after adding noise, because the author finds that, If the score is approximated
directly, the score estimate in the low data density area is inaccurate, so the
method of adding noise is used for a more accurate estimate of score, now prove
the validity of Jpsa(6), starting with the noise-added eq(E):

Tnsar(6) = By [1 lso(#) — Vs logq<az~>||2]
— E,(@) [IISe( I = 50@) T Vi log gy + & IV, log a(z >||] (9)

~ £, |5 Iso@)* = soa) Vs 1084(2)] +,
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Now calculate the second term, there is
By [50(&) Vs loga(@)] = [ 50(2)" Vs loga()a(2)da
= /se(i’)—rva"ﬂ(i)@di (10)
_ / 56(8) T Vaq(7)di

We know ¢(z) = [ q(x)q(Z | z)dz,take into the above formula, there is

/ so(%) Viq(3)dE = / so(@) " <vf / q(z | x)q(m)dx) dz

= [[ so@Tate)Viatale) S deaa

47| )
_ / / 5o(®)Tq(@ | 2)q(x) Vs log q(@ | 2)dedz (D

B // so() Vi logq(i | x)q(2, x)dzdi

= FEyz.0) [so(i)—rvgc log q(% | x)]

Substitute the second computed term into the original expression
1 . - -
Tesr(6) = Eey | 51s0@)1?] ~ Eyae [3(2) Valon(ale)] + €

B, (% L R 7)"'V;logq(z | z
— By(00) |5 @) = sa(@) Vilogala | )] +4 -

1 N .
= Ey(z.0) [5 ls6(%) — Vzlogq(Z | 37)”2] +C1 + Oy
= Jpsmu(0)+C
So we verify the validity of DSM’s objective function.

Several score-matching effects are shown in Fig(ﬂ).
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Figure 6: score-matching effect
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1.3 Langevin Dynamcs

Langevin dynamics is a formula to describe the Brownian motion of molecules in a

potential field, which can be expressed as

dx 1 o
- — 1
Discretize it,and get
X1 =% — 7VRU (x¢) + 0724 (14)

The Fokker-Plank formula describes the steady state of Langevin dynamics as the

Boltzmann distribution .

plx) =  exp{-U(x)} (15)

The score of Boltzmann distribution is the gradient of the potential field
Vilogp(x) = Vi{-U(x) —log Z} = -V, U(x) (16)

By assigning some weights in the formula through the Fokker-Plank formula, Langevin

dynamics can be written as
Xip1 = X4 + 7V logp (x¢) + V272, (17)

Fig(ﬁ)is a toy example of Langevin dynamics.

Example. Consider a Gaussian mixture p(x) = mN (2| i1, 0}) + 2N (2| p12, 03). We can numerically
caleulate V. logp(x). For demonstration, we choose my = 0.6. py = 2, o1 = 0.5, m2 = 0.4, po = —2,
oz = 0.2. Suppose we initialize M = 10000 uniformly distributed samples zyp ~ Uniform[—3,3]. We
run Langevin updates for t = 100 steps. The histograms of generated samples are shown in the figures
below.

Figure 7: Example of Langevin dynamics

Proposition 1.2. Langevin dynamics is stochastic gradient descent. Without

the noise term, Langevin dynamics is gradient descent.

1.4 Challenges of score-based generative modling

Using score-matching to estimate score and using Langevin dynamics to sample is a

natural idea, but it doesn’t produce any results. There are three main Challenges.
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1.4.1 The manifold hypothesis

Hypothesis 1.3. The manifold hypothesis states that data in the real world
tend to concentrate on low dimensional manifolds embedded in a high dimen-

sional space (a.k.a., the ambient space).

Because of the manifold hypothesis, the gradient in ambient space is not well defined,
and there will be multiple scores corresponding to the same point. A simple solution
is to add noise to the original distribution to break the manifold hypothesis, and use
SSM to estimate the score of the same distribution (the difference is whether noise is
added or not). The result see Fig(E).

0 10k 20k 30k 40k 50k Q 10k 20k 30k 40k S0k
# of terations it of lerations

Figure 8: The manifold hypothesis

1.4.2 Inaccurate score estimation with score matching

Think about the loss functionfE,,... [Hse (x) — Vi 10g Pdata (X) ||;} ,The probability pgatais
used to obtain the expectation. In the real distribution space, pqa.;,0f most regions is
0. Therefore, for regions with low data density, we cannot accurately estimate the
score. see Fig(E), This problem can be solved by adding disturbance noise to fill the
probability space. see Fig(@).
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Figure 9: Inaccurate score estimation

1.4.3 Slow mixing of Langevin dynamics

When two modes of the data distribution are separated by low density regions, Langevin

dynamics will not be able to correctly recover the relative weights of these two modes
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Figure 10: Perturbed score estimation

in reasonable time, and therefore might not converge to the true distribution.

Consider a simple example pgata (X) = 701 (%) + (1 — 7)p2(x), where pi(z) and pa(z) are
two p.d.f , but the support sets do not intersect, in p;(x)’s support set,Vy 10g paata (X) =

Vi (logm + logp1(x)) = Vi logpi(x), and in py(z)’s support set, Vi 10g paata (x) = Vi (log(1—
) + logpa(x)) = Vylogpa(x), It can be seen that Langevin dynamics cannot capture
the real distribution weight when the support sets are disjoint. The solution is to add
noise to the original distribution to make the support sets intersect, so as to estimate

the score more accurately.

i.i.d samples s Langevin dynamics samples 8 Annealed Langevin dynamics samples

2 2 2
0 0 0
2 -2 -2
-4 -4 -4
-8 ] -5
-8 -8 -8
-5 0 5 -5 0 5 -5 0 5

(a) (b) (c)

Figure 11: Slow mixing of Langevin dynamics

1.5 Noise Conditional Score Networks

The author proposes a new score matching method, Noise Conditional Score Networks
(NCSNs), to solve the above three challenges. The solution is also clear, that is, to
add multiple levels of noise to the same distribution, so that the minimum distur-
bance distribution can be close to the original distribution. The maximum disturbance
distribution enabled us to accurately estimate the score, and then annealed Langevin
dynamics was used to sample the original distribution according to the score estimated

by NCSN, see Fig((Ld).
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Figure 12: Diagram of annealed Langevin dynamics

Model Inception FID
Algorithm 1 Annealed Langevin dynamics. CIFAR-10 Unconditional
Require: {o;}% .6, T. PixelCNN [59] 4.60 65.93
I- Initialize %o PixelIQN [42] 529 4946
2 fori «— 1to L do EBM [12] 6.02 40.58
3: a; +e-otfol > a; s the step size. E{JGSBTEE; (18] ;gg i % fgé
0. . . =
;‘ for ]t)‘_ 1to T;i\‘; 0.1 SNGAN [36] 8224+ .05 217
raw zy ~ CEI 1) ProgressiveGAN [25]  8.80 4+ .05 -

6: Xt ¢ X1+ 553()"(:71‘0';') + o Ze NCSN (Ours) 8.87=+.12 2532

7 End fon: CIFAR-10 Conditional
8 L EBM [12] 8.30 37.9
9: end for SNGAN [36] 8.60+.08 255
return X7 BigGAN [6] 9.22 14.73

(a) Annealed Langevin dynamics (b) Inception and FID scores for
CIFAR-10
The objective function of NCSN is
N weight
r(e: L a1 hY E 1 2 1
{oitis ) = N Z (0:) Po; (%) Vi log po, (x) — so (x,09)][; (18)
i=1

Score matching loss

o;is to fix the weights of different disturbance distributions the same, Sampling algo-
rithm see Fig().In the original paper, the step size selection strategy is to make the

; ; s Qise(x,04)
signal-to-noise ratio 3o

Fig(L3H).

become constant.The experimental results are shown in
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2 Score-basd Model

Score-Based genrative model through SDE,see Fig(@).

SCORE-BASED GENERATIVE MODELING THROUGH
STOCHASTIC DIFFERENTIAL EQUATIONS

Yang Song* Jascha Sohl-Dickstein Diederik P. Kingma
Stanford University Google Brain Google Brain
yangsonglcs.stanford.edu jaschasdl@google.com durk@google.com
Abhishek Kumar Stefano Ermon Ben Poole

Google Brain Stanford University Google Brain
abhishk@google.com ermon@cs.stanford.edu pooleblgoogle.com

Figure 14: paper of Score-based SDE

2.1 Use SDE to represent the diffusion model

The diffusion process or reverse diffusion process we describe is a discrete Markov
process. Using SDE to describe a continuous stochastic process can help us analyze it

better in random process theory.

2.1.1 Perturbing data with SDEs

The diffusion process has been described by equations in statistical physics and ther-
modynamics, i.e. Ito SDE:
dx = f(x,t)dt + g(t)dw (19)

where f(x,t)is drift coefficient,g(t)is the diffusion coefficient, wis the standard Wiener
process, that is, w; ~ N(0,tI), discretization of this SDE can obtain the discrete
iterative formula:

XtrAt — Xp = f(X, t)At + g(t) \% Atz (20)

2.1.2 GENERATING SAMPLES BY REVERSING THE SDE

Different from ODE, the inverse process of SDE cannot be solved simply because of
the existence of random terms. Karmogorov’s inverse equation shows that the diffusion
process has its inverse process. Aderson deduced the inverse process of Ito SDE in a

paper in 1982, which is also a diffusion process
dx = [f(x,t) — g(t)*Vxlogpi(x)] dt + g(t)dw (21)

where W is a standard Wiener process when time flows backwards from T to 0, and
dt is an infinitesimal negative timestep.The unknown part is V, log p;(x), which is the
score of the target distribution. If we get the score of the distribution, we can sample
the target distribution from the initial distribution.
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Now to prove that the inverse SDE of Ito SDE is also a diffusion process and is the
SDE indicated by eq.(@), consider the discretized Ito SDE to find its inverse conditional
probability:

P (Terar | ) p(ze)
P (Tiyat)

=p(Terae | 2¢) exp (logp (z¢) — logp (Teyar))

P (2 | Tiae) =

0
~p(Tipar | ) exp { (14t — x4) Vg, logp (x4) — At& logp (%ﬁ)}

— 2 — 1) A2
ocexp{—”mHAt xy — f (24, 1) At

0
- (l’t+At - l"t) Vg, logp (xt) — At—logp (xt)}

242(t) At ot

- {‘2g<1t>m [(@erar —22) = (f (@0 t) = g () Vi, logp () A5

2 2 2
—At%bgp(xt)— flant)at | (f(@nt) = 9" (Ve logp (@) At}

202(t) 2g%(1)
A 1
29 exp {—MH (Teyar —x) = (f (Tegan t + At)

_92(t + At)vﬂftJrAt, 10gp (xt-i-At)) At”%}
(22)

Then the conditional probability of the reverse process is also a Gaussian distribution,

and its mean and variance are:

M= TipAt — (f (ItJrAta t+ At) - 92(t =+ At)vIt+At Ing (thAt)) At

(23)
o® = g*(t + At)At
So the discrete Reverse SDE could be written as

Tepnt — T = (f @eran, t + AL) — g*(t+ At) Va0, 10gp (Ti1a1)) At + g(t + At)V Atz
(24)
So we can take it in a continuum, and get eq.(@).

2.1.3 Estimating Scores for the SDE

0" = argmin, {A(t)EX(O)Ex(mx(O) [HSQ(x(t), £) — Ve log pos (x(t) | x(O))Hﬂ } . (25)
To average the weights, setA oc 1/E [Hv,m log por (x(1) | x(O))Hﬂ

2.2 VP SDE
2.2.1 DDPM

Diffusion:

x; =\/1—-6ixio1 ++/Bizi—, i=1,--- N (26)



2 SCORE-BASD MODEL 13
Xy = \/d»tX() + v 1-— Q€9 (27)
Samping:

q (X1 | X, %0) =N (Xt—1§ﬁt (x¢,%0) ,Bt1> )
\/Oét—lﬂtx n Vo (1 —dt—l)x 1 (xt B 1—o 89)

where  fi, (x¢,%0) 1=

17dt 0 17(175 t_,/at \ll—dt
~ 11—
and ;= 1 = lﬁt By
— at
(28)
Loss function:
min Y Dir, (¢ (%1 | %1,%0) [ps (%121 | %)) (29)
t>0

Ly

L(0) :=Ey, e {53 He — € (\/>xo + V1 — aye, t)” } (30)

20' Qi (1—Oét

Lampte (0) := Ey 5, « [He — es (Varxo + VI—aue, b } (31)

2.2.2 The SDE of DDPM

To continuous a discrete Markov chain, we need to define a minimum time scale, let
{B;=N @}?’:1, Nis the number of diffusiion step,re-write eq.(@)

= \/1_%}(2'—1_" \l %Zi—ly 2217 7N (32>

In the limit of N — oo, {51} becomes a function 3(t) indexed by ¢t € [0,1]. Let
B(t 4 At)correspond to 3, there is

(t+ At) = /1 — B(t + At)Atx(t) + \/B(t + At)Ata(t)
~ x(t) — 5ﬂ(t + At)Atx(t) + / B(t + At)Ata(t) (33)
= x(t) — 5B AB() + B,

in the limit of At — 0,we can get VP SDE:

dx = —%5(t)xdt + /B(t)dw (34)

Corresponding to eq.(@), the drift coefficient and diffusion coefficient corresponding to
DDPM can be obtained:

Fla,t) =~ 1B(0)x
{ o(t) = /BT (%)

The corresponding sampling SDE is

dx = [—;B(t)x — B(t)Vy logp,(x)| dt + +/B(t)dw (36)
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If the SDE framework can accommodate DDPM, then Reverse SDE discretization will
inevitably yield the same result as DDPM sampling. Now let’s prove that Reverse SDE
is equivalent to DDPM sampling.
Rewrite the sample of DDPM as

1 Bit1 )
i = e | Titl — i+1,0+ 1) ) + v/ Bir1z 37
x =5, (35 +1 —a €0 (Tit1,1 )) VBiv1Zit1 (37)

Find the score of DDPM:

sg (zy,t) = Vy1log Py (z | zo)
=V, log N (245 Vayao, 1 — ay)

=V, (_ (¢ — \/O_Ttxo)?)

2(1—ay)

_ xt—\/OthUo (38)

1—a
B _\/67’5\/% (l’t—\/l—aﬁe (l’t,t))
N 1— &

1
= ——F—5%0 (xtvt)

1 — O

Take sg (z4,t) = —ﬁ&'g (z¢,t) into DDPM sampling equation:

1
X = ——— (%41 + Biy180* (Xiz1,7 + 1)) + /Bit1zip

VA BZ-H

(1 + Bzﬂ +o (5z+1)> (xi41 + Biv1e- (Xit1,0+ 1)) + v/ Bit12i11

(1 + /31+1> Xit1 + Biv186c (Xix1,1+ 1)) + v/ Biv1Zi+1

<1 + Bz+1> Xiy1 + Biv18er (Xip1,0+ 1) + ﬁz+150* (Xiv1,7 + 1) + v/ Bit1Zi41

~ <1 + 25i+1> Xit1 + Bit180r (Xip1,1 + 1) + /Bit12i1
(39)
Discretization Reverse VP SDE eq.(@) and then there is

Ti4+At — Tt = —%B(t)mtAt — B(t)Vylogp(z) At + /B(t) /| Atz (40)

Let At = —1,t = i+ 1, we can get eq.(@) form, so we prove that DDPM can be
integrated into the framework of SDE, DDPM is also a kind of score-based model.In
addition, the authors call the sampling method of DDPM ancestral sampling.
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2.2.3 Variance Preserving

Applied Stochastic Differential Equations indicates that for a diffusion process, the mean

and covariance matrix of its edge distribution can be expressed by the following ODE:

{ G = Bl () (a1)
L — B f(z,t)(x—m)"] + E[(x—m)f (z,t)] + E[g*(t)]
For VP SDE, the ODE of its covariance matrix is
%f(t) = B(t) (1 - Syp(t) (42)
Solve the ODE, and get
Svp(t) = T+ el ~709 (33yp(0) — ) (43)

The covariance matrix of VP SDE is bounded by Xypand I. So it is called Variance
Preserving SDE,see Fig(@).

Variance of Perturbation Kernels Mean of Perturbation Kernels Variance of Perturbation Kernels
2500 SMLD original [ 2 Lo -'\\ DDPM original L0 e
T
VE SDE | o N VP SDE /
2000 i = 08 \ 0.8 /
] | ‘s N\ [ /
£ 1500 = 0.6 N 206 /
8 | g \ T /
© 1000 / 504 N 504 /
> ! w AN > /
/ 2 L Y / L
500 = 0.2 ~ 0.2 DDPM original
/’ ] - /
o ~ / VP SDE
0 —m————e - o e — 0.0 =
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
t t t
(a) SMLD (b) DDPM (mean) (c) DDPM (variance)

Figure 15: Variance Preserving and Variance Exploding

2.3 VE SDE

SMLD can also be integrated into the SDE framework in the same way as DDPM.

2.3.1 SMLD
Diffusion:

Xi:Xi,1+\/U7;2—UZ»2_1Zi,1, ZII, 7]\f (44)
Sampling:

Xi11 = Xx; + 7Vilogp (x;) + V273, (45)



2 SCORE-BASD MODEL 16

2.3.2 The SDE of SMLD

Rewrite the corner label of eq.(@)

dlo?(®)]
dt

_ [d[e*(®)]
dx = i dw (47)

Thus, the drift coefficient and diffusion coefficient of VE SDE are obtained as follows:

flx, t) =0
{ 9(t) = \/@ o

So Reverse VE SDE can be written as

x(t + At) = x(t) + /o2(t + At) — 02(t)a(t) ~ x(t) + Atz(t)  (46)

Taking the limit of At, there is

do?(t)
dt

dr = —V,log py(z)do®(t) + dw (49)

Discretized Reverse VE SDE, and we can get

Tisar — 3y = — [0 (t + At) — 02 ()] V. logpi(z) + /o2 (t + At) — 02(t)2 (50)

It can be seen that this formula is not completely in the form of Langevin Dynamcs,
and the diffusion of SMLD is not compatible with the sampling, which may be the
reason why the effect of SMLD is worse than that of DDPM.

We can use the method in DDPM paper to infer the ancestor sampling process of SMLD
from the perspective of maximum likelihood, and the corresponding sampling formula

is as follows

o2 (o2 — o2
Xi 1 =%+ (0] — 07_1) se % (x;,7) + \/ SR 2 Z_l)zi:i =12,--- N (51)

0

The experimental results in the paper show that both reverse diffusiion sampler and

ancestor sampling are better for SMLD than Langevin dynamics sampling.

2.3.3 Variance Exploding

Use the same method as for VP SDE to list the ODE satisfied by the VE SDE covariance

matrix a5 do(t)
2(t o(t

_— = ) 52

dt dt (52)

Solve the ODE and we can get

() =3(0) + (o?(t) — 0*(0)) I (53)
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Because it is usually necessary to add enough noise so that score can be accurately
estimated, the covariance matrix of VE SDE is often unbounded, which is also related
to the lack of weight in front of zyin the process of SMLD diffusion. If we want to
eventually spread to the Guass distribution, we must set a large enough variance for

diffusion.

2.4 Prebabliity Flow ODE

Score-based models enable another numerical method for solving the reverse-time SDE.
For all diffusion processes, there exists a corresponding deterministic process whose
trajectories share the same marginal probability densities {p; (x)}f:O as the SDE. This
deterministic process satisfies an ODE:

dx — [f(x, b — %g(t)QVX log pt(x)} dt (54)

We name the ODE in eq. (@) the probability flow ODE.
Now let’s prove that the ODE corresponding to Ito SDE is eq.(@). Consider a more
general Ito SDE:

dx = f(x,t)dt + G(x,t)dw (55)

where f(-,t) : R — R? and G(-,¢) : R? — R The marginal probability density

pi(x(t)) evolves according to Kolmogorov’ s forward equation (Fokker-Planck equation):

N
xt Z

Dij(x, t)p(x, 1)) (56)

“MZ
uMz

Where D = fo0 " ie.
D;j(x,t) ka X, t)o,(x,t) (57)
Substitute the diffusion coefficient and drift coeflicient of Ito SDE into eq.(@)

PE
Z O0x;0x;

i=1 j=1

3]%

(%, 1)p(x)] +

N
1=

Zle X, t)Gp (%, t)pe(x )]

=1

U

d

0
1 0@- lza%

j=1

M& H'M&

l\D\»—A

o L, ()] +

1=1 7

> Gin(x,6)Gjk(x, t)ps (x)] 1

k=1
(58)
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Note that
i 5 [
> Er lz Gir(x, 1) G (x, t)Pt(X)l
j=1 "7 Lk=1
i 5 [ d d P
:Zi Gir(x,t) G (x,1) +ZZGm X, 1)G i (%, £)pe(x) 57— log pi(x)
j=1 ax] k=1 j=1k=1 Bx]

=p:(x)V - [G(x,1)G(x,8) 7] + p:(x)G(x,t)G(x,t) " Vi log p;(x)
(59)
based on which we can continue the rewriting of eq. (@) to obtain

Oy (x) ~ 9 ! d

i=1

d

s % .05, ()

=1

d
%Z V- [G(x,1)G(x,t) "] + p(x)G(x, )G(x,t) T Vi log pi(x)]
= Z 87551 {fi(x, t)pe(x)

5 [V [0 G 0)T] + Glx 06 () Vilorm(x)] )|

X

[ xtpt()}

(60)
where we define

~ 1 1
fx, 1) = £(x,t) = 5V - [G(x,)G(x, 1) 7] = SG(x,1)G(x,1) " Vi logpy(x) (61)
Then compare Kolmogorov’s forward equation,and the diffusion coefficient is zero:
dx = f(x, t)dt + G(x, t)dw = f(x, t)dt (62)

In this way, the ODE corresponding to Ito SDE is obtained, and they have the same
edge probability density. Since the ODE has no randomness, we can sample from the
ODE by any numerical solution. For example, the numerical simulation of the ODE

can be performed simply by iterative algorithm, that is, the PF ODE is discretized:
1 . .
X; = X401 — fi+1 (Xi+1) + §Gi+1GlT+1Sg* (Xi+17 1+ 1) s 1= O, 1, cee ,N -1 (63)
Corresponding discrete PF ODE of VE SDE and VP SDE are as follows:

1
Xi:Xi+1+§(0'7;2+1—0'2»2)Sg*(xi+1,0'i+1>, z:O,l, ,N—]. (64)
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1
Xiz(2—\/l—ﬂi+1)xi+1+55¢+159* (Xip,i+1), i=01,---,N—1  (65)

Using PF ODE, we can do Exact likelihood computation,Manipulating latent represen-
tations ,Uniquely identifiable encoding and Efficient sampling.

2.5 Sampling

We name these sampling methods (that are based on the discretization strategy in
Reverse SDE) reverse diffusion samplers.Any SDE solver can be used to solve the
problem. The author proposes a predictor corrector sampling algorithm. reverse SDE

was used as predictor and annealed Langevin dynamics as corrector. see Fig(@). The

Algorithm 2 PC sampling (VE SDE) Algorithm 3 PC sampling (VP SDE)
I xn ~ N(O,crr?ml) I: xy ~ N(0,TI)
2: fori =N —1to0Odo 2: fori =N —1to0do
i: X; ‘TA;(B’II+ (J‘?+1 - G?)SB* (xi+11 Ji+1) 3 x;— (2 — /11— B,’+1)X;’+1 + ,314_159* (X.’+1,'n‘: == 1)
¢ amalE 4: z~ N(0,1)
51 Xi— X;+ /07, — o’z S P Predictor
6: forj=1to M do 6: forj=1to M do Corrector
7. z~N(0]I) 7: z~N(0,1)
8: X; <« X; + €;Sgx (Xi, i) + +/2¢;2 8: X; — X; + €:Sgx (Xi,1) + /262
9: return xp 9: return xo

Figure 16: Predictor corrector sampling

experimental results are shown in Fig(@).

Variance Exploding SDE (SMLD) Variance Preserving SDE (DDPM)
FID| Sampler
P1000 P2000 C2000 PC1000 P1000 P2000 C2000 PC1000
Predictor
ancestral sampling | 4.98+06 | 4.92:m 36203 | 324+ | 31103 321+ 0
reverse diffusion 479+ 01 | 472+ 2043+07 | 36002 | 321202 | 310+.03 | 19.06 06 | 3.18+ .01
probability flow 1541205 | 12871 m 35004 [ 359104 | 325104 3.06 = 03

Figure 17: SDE experiment results
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